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1 Introduction

1.1 Distributions related to the normal distribution

Density function of the normal distribution |

Chi-squared distribution |

If Y; ~ A (11;,02) are independent, then

?

n
1=

Y1 — 2 2
1( = ) X" (n)

where n is the number of degrees of freedom.

If Z ~ #(0,1), then Z% ~ x*(1) is Chi-squared distributed with 1 degree of freedom.

t-distribution |

If Z ~ .#(0,1) is independent to X ~ x?(n), then

7
~ t(n)
v X/n

is t-distributed with n degrees of freedom.
F-distribution |
If X1 ~ x2(n1) and X5 ~ x%(n2) are independent, then

X1/

~F
XQ/nQ (n17 n2)

is F'-distributed with parameters ny,ns.

Definition Variance matrix

Let y be a random vector with expectation vector . Then the variance matrix of y is

Var(y) =E [(y — pu)(y — )]

Note that the variance matrix is symmetric and hence the eigenvalues are real.

Multivariate normal distribution |

If Zy,...,Z, areiid. .4#(0,1) random variables, and z" = (Zy,...,Z,), then

f(Z1,...,2,) = Hf(zi) = <\/127r)nexp (-i&)

and z ~ .4(0, I,,) is multivariate normal distributed,
where E[z] = 0 is the zero vector and Var[z] = I,, is the identity matrix.

Definition Covariance matrix

Let « and y be random vectors with expectation vectors pt, and p,, respectively.
The covariance matrix between x and y is

Cov(w,y) =E [(x — pa)(y — py) "]

If £ and y are independent, then the covariance matrix is the zero matrix.
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1.2 Generating functions

Definition Generating functions |

Probability generating function:
Gy (t) = E[t"]
Moment generating function:
My (t) = E[exp(t " y)]
Characteristic function:
py(t) = Elexp(it " y)]

Moment generating property

If the n-th derivative of M, is continuous around zero, then

MP(0) =E[Y*] forallk=0,1,...,n
If E[Y"] exists, then
E[Y*] = (=i)*¢P(0)  forall k=0,1,...,n

Properties of the characteristic function |

o If E[|y|] < oo, then ¢(t) exists and is continuous, and ¢(0) = —iE[y "]
o If E[|y|?] < oo, then ((t) exists and is continuous, and $(0) = —E[yy ]
o If P(y =c) =1, then o, (t) = exp(it'c)

° If‘y ~ JV(/L,V). then (py(t) = exp (ZtTu_ tT2vt>

1.3 Convergence

Definition Convergence

Convergence in distribution

yngy — Py, >x) > Ply <) forall xz e RP

Convergence in probability

yn By = lim P(||lyn —y| >¢) foralle >0
n—0o0

Proposition Some asymptotic properties

D D
Yn — Y == Yn — Y
P D
yn‘—>c <:,>yn’—)c

D P D
Yn — Y, d(Yp, ) 0 = x, >y

)

D P D

Yn — Y, Ty — € = (Yn, xn) — (y,cC
P
— (y, )

D P
Yn — Y, Tpp — T — (ynvwn)
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Lemma Slutsky’s lemma

D D D
Yn — Y, T — C = Yp +Tp — Y +C
D D D
Yn — Y, Tp —> C — TpYp — CY

D D —1 D -1
yn_>y7wn—>cz>wn Yp —C Y

Proposition |

Yy, converges in distribution to y if and only if ¢, (t) converges to ¢, (t) for all ¢.

Theorem Continuity theorem

Let g : R*¥ — R™ be continuous at every point of a set C such that P(y € C) = 1. Then

1.4 Central limit theorem

Theorem Central limit theorem |

If y1,vy2,... arei.i.d. with mean vector p and positive definite variance matrix 3, then

Vi@ — p) 2 #(0,%))

Theorem Lindeberg-Feller CLT

Suppose that
e X, ; are independent for j =1,...,n (per row)
e E[X,;] = 0 (often without loss of generality)
o Var(X,,;) = op;
® In= Z;‘L:1 Xnj
e B2 = Var(Z,) (monotonically increases with n)

If the Lindeberg condition holds:

n—o0

1 n
lim 5 ;E [X71(1Xns| > €Bn)] | =0 foralle >0

Then 7
n D
— = 1
& DA 01)
Conversely, if
lim — maxo,; =0 and ég>JV(0 1)
n— o0 % i<n " Bn ’

then the Lindeberg condition holds.
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2 Estimation

2.1 Exponential family

Definition Exponential family |

A probability distribution fy(y) belongs to the exponential family if it can be written as

foly) = s(y)t(9)e®*®
= expla(y)b(0) + c(0) + d(y)]

If a(y) = y, then the distribution is canonical. b(6) is the natural parameter of the distribution.

Lemma |

Univariate distributions in the exponential family are concave, i.e. they have a unique maximum.

Lemma |

For a density function fyp(y) = expla(y)b(8) + ¢(0) + d(y)] in the exponential family, if b’(6) # 0 then

Ela(Y)] = — Varla(Y)] = b//(&)g’((gb)/(_e)c)/;(e)b/(g)

Notation |

Log-likelihood:
(0;y) = log L(6; y)

Score function:

d
0;y) = —£(0;
Ut;y) = 3540 9)
Information number:
J = Var[U(6; y)]

Lemma |

For a distribution in the exponential family, we have E[U] =0 and J > 0.

Lemma |

For a distribution in the exponential family, we have

'(6)
b'(6)

E[-U'] = Var[U] = b () ot — ¢"(60) = J

2.2 Maximum likelihood estimators

Definition Maximum likelihood estimator

The maximum likelihood estimator én is the value of 6 which maximizes the likelihood.

Orp = argmax L(0,y) = argmax £(0, y)
0cO 0cO
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Theorem Strong consistency of MLE |

If {Y,,} arei.i.d. with density f(y;#) and true parameter 6, and
e () € © with © compact

f(y;0) is continous in 6 for all y

o there exists a dominating function K (y) such that Eg,|K(Y)| < o0
and U(y; 0) = log f(y;0) — log f(y; 60) < K(y) for all y,0

e for all § € O, there exists p > 0 such that sup f(y;6’) is measurable in y
16'—0|<p

o if f(y;0) = f(y;0p) almost everywhere, then 6 = 6,

then for any sequence of ML estimates we have {6,,} — fq:
lim P(||6, — 6] <) =1
n—oo

Note: all conditions are necessary.

Theorem Asymptotic normality of MLE |

If {Y,,} are i.i.d with density f(y;#) and true parameter 6, and
e O is an open subset of RP and 6 is an interior point of the confidence interval around 0,
e 2nd partial derivatives of f(y; ) with respect to § are continuous for all y
e There exists a dominating function K (y) with Eg,|K(Y)| < oo such that the absolute value of each element
of ' 5
Y(y:0) = 557 1089(y;9)
is integrable and bounded by K (y) uniformly in a neighborhood of 6,
o the Fisher information matrix .J(6g) = —Eg,%(y, ) is positive definite
o if f(y;0) = f(y;0p) almost everywhere, then 6 = 6,

then .
V(0 —60) 2 ¥ (0, 7(6p)

Theorem Cramer-Rao lower bound |

If
o g(0) =Eg[0(Y)]
. %f(y;ﬁ) exists and passes the integral sign in both [ f(y;0) =1 and [(y)f(y;6) dy = g(0)
e 0< J(0)

then

for all 6 € Q

Corollary |

If the conditions for asymptotic normality hold, then
J(00)2/n(Bs — 60) > N (0, 1)

If J() is continuous, then
J(0n) > J(6o) J(0)7F 55 J(0o) 7

Corollary |

The maximum likelihood estimator attains the Cramer-Rao lower bound if and only if é(y) is a sufficient statistic for
f from the exponential family.
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Likelihood ratio test

Assume the maximum likelihood estimator exists and is asymptotically normal.
Suppose that Hy: 01 =--- =60, = 0 where 1 <r < k, and 6 satisfies Hy. Then

B Supg, H?:1 f(xz|0)> _ L(6)))\ a o
2los ( supo T, f(w:18) ) ~ 21 <L<én>> o

3 Linear models

Linear models |

Linear models have the form
EY;)=p == Yi ~ N (i, 07)

In generalized models we have
g(w) = ! B

for a non-linear link function g which is injective and continuous.

Weibull distribution

The density function of the Weibull distribution is
/\yA—I Y A
f0.0) = “g—exe |~ (§)

It belongs to the exponential family: f(y,8) = expla(y)b(8) + ¢(0) + d(y)] with

a(y) = y* b(o) = -6 c(6) = log(A) — Alog(6) d(y) = (A—1)logy

3.1 The IWLS algorithm

Algorithm Newton-Raphson algorithm for finding MLE |

We repeatedly apply the following step to find the MLE 6:

9m+1 =0 — m

Algorithm Modified Newton-Raphson (Nelder & Wedderburn)

We repeatedly apply
U(n)
em = Um = 77//0 N1 Ym
+1=10 +E[—U’(9m)] O +

Assuming convergence, we end up with the MLE (the zero of the score function).

_,. U _
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Preparations for IWLS

f(Yi,0:) = expla(Yi)b(0:) + c(0:) + d(Y3)]

Define /6
N — a(w) = 2T
Hi b/(ez) i g(ﬂz) Z; 6

Let W be the n x n diagonal matrix with elements

. 1 Op; 2
w;t =
Var(Y;) \ On;

and let X be the matrix such that the i-th row is mZT Finally, define

on;
Opi

p
2™ =3 zabl™ + (i — i)
k=1

Suppose Y7, ...,Y, are independently distributed with densities in the exponential family:

Proposition |

The vector
p(m+1) — (XTW(m)X)_lXTW(m)z(m)

is the global minimizer of
2
W L (m) _ (pr(m) leH
w2t — ()t xp||

over any b € RP+!

Algorithm IWLS (lterative Weighted Least Squares)

1. Start with b(!), possibly rational.
2. Setm = 1.
3. Compute W™ and W +1) and b1,
4. While m < 100 and [|b™ — b(™+1|| > 0.0001, repeat the following steps:
(a) Compute W+ and 2(m+1) from pm+1)
(b) Compute the update
p(m+1) — (XTW(mH)X)71W(m+1)z(m+1)
(c) m«—m+1

If the IWLS algorithm generates a converging sequence, then

b b= =fyLe = (XTWX) ' XTW2

Proposition |

Under regularity assumptions the estimator obtained from IWLS is consistent
5 P
g—8

and asymptotically normal
(B=8) %4 (0,(XTW X))
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3.2 Inference

Proposition |

The score function is asymptotically normal:

UB =U%#0,7) = UTT'U % 2(p)

Definition Asymptotic chi-square testl

We have . . .
(Bo — B)TI(B)(Bo — B) L X2 (p)

This is known as the Wald statistic.
We reject Hy by the asymptotic 2 test if

(Bo = B)TI(B)(Bo — B) > Xo1-a

Definition Deviance

D =2(4(8) - £(B))

4 Normal linear models

Definition Normal linear model |

Y =80+ bixi +-+ Bprp+ € 6NJV(0,U2)

Model equation |

Let 27 = (1,241, %i2, - -+ ,24p) be row i of the n x p design matrix X.

Model equation:
e~ N(0,0%]) = y~ N (XB,0?])

Likelihood for the normal linear model |

£y, 8,0%) = (Vamo®) ™ exp |~ 53 ly — X513

The estimates of 5 and o2 are independent, hence we can first estimate 5 and use it for estimating o2.

4.1 Estimation of parameters

Definition Residual sum of squares |

N
RSS(8) = (i — = B)° = (y—XB) (y - XB) =y "y — 28" X"y + BT X" X8

i=1

Estimator of coefficients |

The MLE of § is equal to the argmin of the residual sum of squares. By convexity,
A= XTX)"'XTy

globally minimizes the RSS function.
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Estimator of the error variance

n

1 1 .
~2 A \2 2
6% = N (i — i) = ——Ily - XB
i l(yz yz) ||}_/ ||

We obtain the estimator of the residual standard error 6 by taking the square root.
If 6 is smaller then there is less error in y and hence greater estimation precision.

Definition R? |

2o 2Wi—y)? | RSS
> —vi)? TSS

Generally, R? is squared correlation between prediction 4 = X 3 and response Y.

Definition Prediction interval |

Yo — ta/2,nfp\/572(1 + 25 (XTX)t2o)) < yo < Jo + ta/2,nfp\/a'2(1 + 2 (XTX) 1))

Remark: the prediction interval is larger than a confidence interval, and prediction always involves some variation
due to the term 62

4.2 Detecting influential observations

Definition Marginal testing parameters |

Cjj is element jj of (X7 X)™1, and we define the standard error as

se(Bj) = 4/82Cyj

Definition Hat matrix

H=XXTx)"1xT

The hat matrix projects outcomes y onto space spanned by the columns of predictor matrix X.

Predicted outcomes

The predicted outcomes are R
¥=Xp=CX"X)"' X"y =Hy

Variance of predicted outcomes:
Var(§ = o?H

Variance of residuals:
Var(y — ¢ = o*(I — H)

Leverages |

The leverage is the i-th diagonal value h;; of H, which is in the interval [0, 1] for all i.
The sum of leverages equals p, and the observation i is influential if

= 2
n
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4.3 Residuals

Definition Standardized residuals

Size of residuals: ¢; = y; — ¥;
Standardized residuals with mean zero and approximate unit variance:

An observation is an outlier if |d;| > 3.

Definition Studentized residuals |

Adapting for high leverage gives the Studentized residuals:

Definition Externally Studentized residual |

The externally Studentized residual

s
t; = T ~tn_p-1
U(i) o (1 — h”)

is the basis for a statistical test with Hy : €; is not an outlier

Definition DFBETAS |

Let Bj(i) be the coefficient Bj computed without observation 7. Then

Bi — Bjay

DFBETAS;; =
6% - Cji

Definition Cook’s distance

o = (B = Buw)"XTX(B - B
3 pé—z

5 Survival analysis

Definition Survival functionl

Let the random variable Y > 0 be the survival time.
The survival function gives probability of survival beyond y, that is

SY)=PY >y)=1-F(y)

Definition Hazard functionl

The hazard function £ is the probability of death in [y, y + d,] given survival up to y relatively to an infinitely small

interval Y €| 5117 > g
o €Elyy+d]lY>y d
h(y) = 51;310 5, =3 log(S(y))
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Definition Cumulative hazard functionl

For the cumulative hazard function we have

The median yg 50 is the solution of

Lack of memory

If the system lacks memory of survival beyond x, then
PX>z+y|X>z)=PX >y)
The concept of lack of memory leads to the exponential distribution.

F(z)=(1-e")1pe)

A work of art |
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