

Statistical Modelling Lecture Notes (2025/2026)

Griffin Reimerink

Contents

1	Introduction	2
1.1	Distributions related to the normal distribution	2
1.2	Generating functions	3
1.3	Convergence	3
1.4	Central limit theorem	4
2	Estimation	5
2.1	Exponential family	5
2.2	Maximum likelihood estimators	5
3	Linear models	7
3.1	The IWLS algorithm	7
3.2	Inference	9
4	Normal linear models	9
4.1	Estimation of parameters	9
4.2	Detecting influential observations	10
4.3	Residuals	11
5	Survival analysis	11

1 Introduction

1.1 Distributions related to the normal distribution

Density function of the normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Chi-squared distribution

If $Z \sim \mathcal{N}(0, 1)$, then $Z^2 \sim \chi^2(1)$ is **Chi-squared** distributed with 1 **degree of freedom**.

If $Y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ are independent, then

$$\sum_{i=1}^n \left(\frac{Y_i - \mu_i}{\sigma_i}\right)^2 \sim \chi^2(n)$$

where n is the number of degrees of freedom.

t-distribution

If $Z \sim \mathcal{N}(0, 1)$ is independent to $X \sim \chi^2(n)$, then

$$\frac{Z}{\sqrt{X/n}} \sim t(n)$$

is **t-distributed** with n degrees of freedom.

F-distribution

If $X_1 \sim \chi^2(n_1)$ and $X_2 \sim \chi^2(n_2)$ are independent, then

$$\frac{X_1/n_1}{X_2/n_2} \sim F(n_1, n_2)$$

is **F-distributed** with parameters n_1, n_2 .

Definition Variance matrix

Let \mathbf{y} be a random vector with expectation vector μ . Then the **variance matrix** of \mathbf{y} is

$$\text{Var}(\mathbf{y}) = \mathbb{E}[(\mathbf{y} - \mu)(\mathbf{y} - \mu)^\top]$$

Note that the variance matrix is symmetric and hence the eigenvalues are real.

Multivariate normal distribution

If Z_1, \dots, Z_n are i.i.d. $\mathcal{N}(0, 1)$ random variables, and $\mathbf{z}^\top = (Z_1, \dots, Z_n)$, then

$$f(Z_1, \dots, Z_n) = \prod_{i=1}^n f(z_i) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2}\mathbf{z}^\top \mathbf{z}\right)$$

and $\mathbf{z} \sim \mathcal{N}(0, I_n)$ is **multivariate normal distributed**,
where $\mathbb{E}[\mathbf{z}] = \mathbf{0}$ is the zero vector and $\text{Var}[\mathbf{z}] = I_n$ is the identity matrix.

Definition Covariance matrix

Let \mathbf{x} and \mathbf{y} be random vectors with expectation vectors μ_x and μ_y respectively.

The **covariance matrix** between \mathbf{x} and \mathbf{y} is

$$\text{Cov}(\mathbf{x}, \mathbf{y}) = \mathbb{E}[(\mathbf{x} - \mu_x)(\mathbf{y} - \mu_y)^\top]$$

If \mathbf{x} and \mathbf{y} are independent, then the covariance matrix is the zero matrix.

1.2 Generating functions

Definition Generating functions

Probability generating function:

$$G_Y(t) = \mathbb{E}[t^Y]$$

Moment generating function:

$$M_y(t) = \mathbb{E}[\exp(t^\top y)]$$

Characteristic function:

$$\varphi_y(t) = \mathbb{E}[\exp(it^\top y)]$$

Moment generating property

If the n -th derivative of M_y is continuous around zero, then

$$M_Y^{(k)}(0) = \mathbb{E}[Y^k] \quad \text{for all } k = 0, 1, \dots, n$$

If $\mathbb{E}[Y^n]$ exists, then

$$\mathbb{E}[Y^k] = (-i)^k \varphi_Y^{(k)}(0) \quad \text{for all } k = 0, 1, \dots, n$$

Properties of the characteristic function

- If $\mathbb{E}[|y|] < \infty$, then $\dot{\varphi}(t)$ exists and is continuous, and $\dot{\varphi}(0) = -i\mathbb{E}[y^\top]$
- If $\mathbb{E}[|y|^2] < \infty$, then $\ddot{\varphi}(t)$ exists and is continuous, and $\ddot{\varphi}(0) = -\mathbb{E}[yy^\top]$
- If $\mathbb{P}(y = c) = 1$, then $\varphi_y(t) = \exp(it^\top c)$
- If $y \sim \mathcal{N}(\mu, V)$, then $\varphi_y(t) = \exp\left(it^\top \mu - \frac{t^\top V t}{2}\right)$

1.3 Convergence

Definition Convergence

Convergence in distribution

$$y_n \xrightarrow{D} y \iff \mathbb{P}(y_n \geq x) \rightarrow \mathbb{P}(y \leq x) \quad \text{for all } x \in \mathbb{R}^p$$

Convergence in probability

$$y_n \xrightarrow{P} y \iff \lim_{n \rightarrow \infty} \mathbb{P}(\|y_n - y\| > \varepsilon) = 0 \quad \text{for all } \varepsilon > 0$$

Proposition Some asymptotic properties

$$\begin{aligned} y_n &\xrightarrow{D} y \implies y_n \xrightarrow{D} y \\ y_n &\xrightarrow{P} c \iff y_n \xrightarrow{D} c \\ y_n &\xrightarrow{D} y, d(y_n, x_n) \xrightarrow{P} 0 \implies x_n \xrightarrow{D} y \\ y_n &\xrightarrow{D} y, x_n \xrightarrow{P} c \implies (y_n, x_n) \xrightarrow{D} (y, c) \\ y_n &\xrightarrow{D} y, x_n \xrightarrow{P} x \implies (y_n, x_n) \xrightarrow{P} (y, x) \end{aligned}$$

Lemma Slutsky's lemma

$$\begin{aligned} \mathbf{y}_n &\xrightarrow{D} \mathbf{y}, \mathbf{x}_n \xrightarrow{D} \mathbf{c} \implies \mathbf{y}_n + \mathbf{x}_n \xrightarrow{D} \mathbf{y} + \mathbf{c} \\ \mathbf{y}_n &\xrightarrow{D} \mathbf{y}, \mathbf{x}_n \xrightarrow{D} \mathbf{c} \implies \mathbf{x}_n \mathbf{y}_n \xrightarrow{D} \mathbf{c} \mathbf{y} \\ \mathbf{y}_n &\xrightarrow{D} \mathbf{y}, \mathbf{x}_n \xrightarrow{D} \mathbf{c} \implies \mathbf{x}_n^{-1} \mathbf{y}_n \xrightarrow{D} \mathbf{c}^{-1} \mathbf{y} \end{aligned}$$

Proposition

\mathbf{y}_n converges in distribution to \mathbf{y} if and only if $\varphi_{\mathbf{y}_n}(\mathbf{t})$ converges to $\varphi_{\mathbf{y}}(\mathbf{t})$ for all \mathbf{t} .

Theorem Continuity theorem

Let $g : \mathbb{R}^k \rightarrow \mathbb{R}^m$ be continuous at every point of a set C such that $\mathbb{P}(\mathbf{y} \in C) = 1$. Then

1.4 Central limit theorem**Theorem Central limit theorem**

If $\mathbf{y}_1, \mathbf{y}_2, \dots$ are i.i.d. with mean vector μ and positive definite variance matrix Σ , then

$$\sqrt{n}(\bar{\mathbf{y}}_n - \mu) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \Sigma)$$

Theorem Lindeberg-Feller CLT

Suppose that

- X_{nj} are independent for $j = 1, \dots, n$ (per row)
- $\mathbb{E}[X_{nj}] = 0$ (often without loss of generality)
- $\text{Var}(X_{nj}) = \sigma_{nj}$
- $Z_n = \sum_{j=1}^n X_{nj}$
- $B_n^2 = \text{Var}(Z_n)$ (monotonically increases with n)

If the **Lindeberg condition** holds:

$$\lim_{n \rightarrow \infty} \left[\frac{1}{B_n^2} \sum_{j=1}^n \mathbb{E} [X_{nj}^2 \mathbf{1}(|X_{nj}| \geq \varepsilon B_n)] \right] = 0 \quad \text{for all } \varepsilon > 0$$

Then

$$\frac{Z_n}{B_n} \xrightarrow{D} \mathcal{N}(0, 1)$$

Conversely, if

$$\lim_{n \rightarrow \infty} \frac{1}{B_n^2} \max_{j \leq n} \sigma_{nj} = 0 \quad \text{and} \quad \frac{Z_n}{B_n} \xrightarrow{D} \mathcal{N}(0, 1)$$

then the Lindeberg condition holds.

2 Estimation

2.1 Exponential family

Definition Exponential family

A probability distribution $f_\theta(y)$ belongs to the **exponential family** if it can be written as

$$\begin{aligned} f_\theta(y) &= s(y)t(\theta)e^{a(y)b(\theta)} \\ &= \exp[a(y)b(\theta) + c(\theta) + d(y)] \end{aligned}$$

If $a(y) = y$, then the distribution is **canonical**. $b(\theta)$ is the **natural parameter** of the distribution.

Lemma

Univariate distributions in the exponential family are concave, i.e. they have a unique maximum.

Lemma

For a density function $f_\theta(y) = \exp[a(y)b(\theta) + c(\theta) + d(y)]$ in the exponential family, if $b'(\theta) \neq 0$ then

$$\mathbb{E}[a(Y)] = -\frac{c'(\theta)}{b'(\theta)} \quad \text{Var}[a(Y)] = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{(b'(\theta))^3}$$

Definition Multivariate likelihood

$$L(\theta, \mathbf{y}) = \prod_{i=1}^n f(y_i, \theta)$$

Notation

Log-likelihood:

$$\ell(\theta; \mathbf{y}) = \log L(\theta; \mathbf{y})$$

Score function:

$$U(\theta; \mathbf{y}) = \frac{d}{d\theta} \ell(\theta; \mathbf{y})$$

Information number:

$$J = \text{Var}[U(\theta; \mathbf{y})]$$

Lemma

For a distribution in the exponential family, we have $\mathbb{E}[U] = 0$ and $J > 0$.

Lemma

For a distribution in the exponential family, we have

$$\mathbb{E}[-U'] = \text{Var}[U] = b''(\theta) \frac{c'(\theta)}{b'(\theta)} - c''(\theta) = J$$

2.2 Maximum likelihood estimators

Definition Maximum likelihood estimator

The **maximum likelihood estimator** $\hat{\theta}_n$ is the value of θ which maximizes the likelihood.

$$\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta, \mathbf{y}) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ell(\theta, \mathbf{y})$$

Theorem Strong consistency of MLE

If $\{Y_n\}$ are i.i.d. with density $f(y; \theta)$ and true parameter θ_0 and

- $\theta \in \Theta$ with Θ compact
- $f(y; \theta)$ is continuous in θ for all y
- there exists a dominating function $K(y)$ such that $\mathbb{E}_{\theta_0}|K(Y)| < \infty$ and $U(y; \theta) = \log f(y; \theta) - \log f(y; \theta_0) \leq K(y)$ for all y, θ
- for all $\theta \in \Theta$, there exists $\rho > 0$ such that $\sup_{|\theta' - \theta| < \rho} f(y; \theta')$ is measurable in y
- if $f(y; \theta) = f(y; \theta_0)$ almost everywhere, then $\theta = \theta_0$

then for any sequence of ML estimates we have $\{\hat{\theta}_n\} \rightarrow \theta_0$:

$$\lim_{n \rightarrow \infty} \mathbb{P}(\|\hat{\theta}_n - \theta_0\| \leq \varepsilon) = 1$$

Note: all conditions are necessary.

Theorem Asymptotic normality of MLE

If $\{Y_n\}$ are i.i.d with density $f(y; \theta)$ and true parameter θ_0 and

- Θ is an open subset of \mathbb{R}^p and θ_0 is an interior point of the confidence interval around $\hat{\theta}_n$
- 2nd partial derivatives of $f(y; \theta)$ with respect to θ are continuous for all y
- There exists a dominating function $K(y)$ with $\mathbb{E}_{\theta_0}|K(Y)| < \infty$ such that the absolute value of each element of

$$\dot{\psi}(y; \theta) = \frac{\partial^2}{\partial \theta \partial \theta^\top} \log g(y; \theta)$$

is integrable and bounded by $K(y)$ uniformly in a neighborhood of θ_0

- the Fisher information matrix $J(\theta_0) = -\mathbb{E}_{\theta_0} \dot{\psi}(y, \theta)$ is positive definite
- if $f(y; \theta) = f(y; \theta_0)$ almost everywhere, then $\theta = \theta_0$

then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{D} \mathcal{N}(\mathbf{0}, J(\theta_0)^{-1})$$

Theorem Cramer-Rao lower bound

If

- $g(\theta) = \mathbb{E}_\theta[\hat{\theta}(Y)]$
- $\frac{\partial}{\partial \theta} f(y; \theta)$ exists and passes the integral sign in both $\int f(y; \theta) = 1$ and $\int \hat{\theta}(y) f(y; \theta) dy = g(\theta)$
- $0 < J(\theta)$

then

$$\text{Var}[\hat{\theta}(Y)] \geq \frac{g'(\theta)^2}{J(\theta)} \quad \text{for all } \theta \in \Omega$$

Corollary

If the conditions for asymptotic normality hold, then

$$J(\theta_0)^{1/2} \sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, I)$$

If $J(\theta)$ is continuous, then

$$J(\hat{\theta}_n) \xrightarrow{\mathbb{P}} J(\theta_0) \quad J(\hat{\theta}_n)^{-1} \xrightarrow{\mathbb{P}} J(\theta_0)^{-1}$$

Corollary

The maximum likelihood estimator attains the Cramer-Rao lower bound if and only if $\hat{\theta}(y)$ is a sufficient statistic for θ from the exponential family.

Likelihood ratio test

Assume the maximum likelihood estimator exists and is asymptotically normal. Suppose that $H_0 : \theta_1 = \dots = \theta_r = 0$ where $1 \leq r \leq k$, and θ_0 satisfies H_0 . Then

$$-2 \log \left(\frac{\sup_{\Theta_0} \prod_{i=1}^n f(x_i | \theta)}{\sup_{\Theta} \prod_{i=1}^n f(x_i | \theta)} \right) = -2 \log \left(\frac{L(\theta_0^*)}{L(\hat{\theta}_n)} \right) \xrightarrow{d} \chi_r^2$$

3 Linear models

Linear models

Linear models have the form

$$E(Y_i) = \mu_i = \mathbf{x}_i^\top \boldsymbol{\beta} \quad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

In **generalized models** we have

$$g(\mu_i) = \mathbf{x}_i^\top \boldsymbol{\beta}$$

for a non-linear **link function** g which is injective and continuous.

Weibull distribution

The density function of the **Weibull distribution** is

$$f(y, \theta) = \frac{\lambda y^{\lambda-1}}{\theta^\lambda} \exp \left[-\left(\frac{y}{\theta} \right)^\lambda \right]$$

It belongs to the exponential family: $f(y, \theta) = \exp[a(y)b(\theta) + c(\theta) + d(y)]$ with

$$a(y) = y^\lambda \quad b(\theta) = -\theta^{-\lambda} \quad c(\theta) = \log(\lambda) - \lambda \log(\theta) \quad d(y) = (\lambda - 1) \log y$$

3.1 The IWLS algorithm

Algorithm Newton-Raphson algorithm for finding MLE

We repeatedly apply the following step to find the MLE θ :

$$\theta_{m+1} = \theta_m - \frac{U(\theta_m)}{U'(\theta_m)}$$

Algorithm Modified Newton-Raphson (Nelder & Wedderburn)

We repeatedly apply

$$\theta_{m+1} = \theta_m + \frac{U(\theta_m)}{\mathbb{E}[-U'(\theta_m)]} = \theta_m + \frac{U(\theta_m)}{J(\theta_m)}$$

Assuming convergence, we end up with the MLE (the zero of the score function).

$$\theta = \theta + \frac{U(\theta)}{J(\theta)} \implies U(\theta) = 0$$

Preparations for IWLS

Suppose Y_1, \dots, Y_n are independently distributed with densities in the exponential family:

$$f(Y_i, \theta_i) = \exp[a(Y_i)b(\theta_i) + c(\theta_i) + d(Y_i)]$$

Define

$$\mu_i = -\frac{c'(\theta_i)}{b'(\theta_i)} \quad \eta_i = g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

Let W be the $n \times n$ diagonal matrix with elements

$$w_{ii} = \frac{1}{\text{Var}(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i} \right)^2$$

and let X be the matrix such that the i -th row is \mathbf{x}_i^T . Finally, define

$$z_i^{(m)} = \sum_{k=1}^p x_{ik} b_k^{(m)} + (y_i - \mu_i) \frac{\partial \eta_i}{\partial \mu_i}$$

Proposition

The vector

$$\mathbf{b}^{(m+1)} = (X^T W^{(m)} X)^{-1} X^T W^{(m)} \mathbf{z}^{(m)}$$

is the global minimizer of

$$\left\| (W^{(m)})^{\frac{1}{2}} \mathbf{z}^{(m)} - (W^{(m)})^{\frac{1}{2}} X \mathbf{b} \right\|_2^2$$

over any $\mathbf{b} \in \mathbb{R}^{p+1}$

Algorithm IWLS (Iterative Weighted Least Squares)

1. Start with $\mathbf{b}^{(1)}$, possibly rational.
2. Set $m = 1$.
3. Compute $W^{(m)}$ and $W^{(m+1)}$ and \mathbf{b}^{m+1} .
4. While $m < 100$ and $\|\mathbf{b}^{(m)} - \mathbf{b}^{(m+1)}\| > 0.0001$, repeat the following steps:
 - (a) Compute $W^{(m+1)}$ and $\mathbf{z}^{(m+1)}$ from $\mathbf{b}^{(m+1)}$
 - (b) Compute the update

$$\mathbf{b}^{(m+1)} = (X^T W^{(m+1)} X)^{-1} W^{(m+1)} \mathbf{z}^{(m+1)}$$

- (c) $m \leftarrow m + 1$

If the IWLS algorithm generates a converging sequence, then

$$\mathbf{b}^{(m)} \rightarrow \mathbf{b} = \hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{MLE} = (X^T \hat{W} X)^{-1} X^T \hat{W} \hat{\mathbf{z}}$$

Proposition

Under regularity assumptions the estimator obtained from IWLS is consistent

$$\hat{\boldsymbol{\beta}} \xrightarrow{P} \boldsymbol{\beta}$$

and asymptotically normal

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} \mathcal{N} \left(\mathbf{0}, (X^T \hat{W} X)^{-1} \right)$$

3.2 Inference

Proposition

The score function is asymptotically normal:

$$\mathbf{U}(\beta) = \mathbf{U} \xrightarrow{d} \mathcal{N}(\mathbf{0}, J) \implies \mathbf{U}^T J^{-1} \mathbf{U} \xrightarrow{d} \chi^2(p)$$

Definition Asymptotic chi-square test

We have

$$(\beta_0 - \hat{\beta})^T J(\hat{\beta})(\beta_0 - \hat{\beta}) \xrightarrow{d} \chi^2(p)$$

This is known as the **Wald statistic**.

We reject H_0 by the **asymptotic χ^2 test** if

$$(\beta_0 - \hat{\beta})^T J(\hat{\beta})(\beta_0 - \hat{\beta}) > \chi^2_{p,1-\alpha}$$

Definition Deviance

$$D = 2(\ell(\beta) - \ell(\hat{\beta}))$$

4 Normal linear models

Definition Normal linear model

$$Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p + \varepsilon \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

Model equation

Let $x_i^T = (1, x_{i1}, x_{i2}, \dots, x_{ip})$ be row i of the $n \times p$ **design matrix** X .

Model equation:

$$\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I) \implies \mathbf{y} \sim \mathcal{N}(X\beta, \sigma^2 I)$$

Likelihood for the normal linear model

$$f(\mathbf{y}, \beta, \sigma^2) = (\sqrt{2\pi\sigma^2})^{-n} \exp \left[-\frac{1}{2\sigma^2} \|\mathbf{y} - X\beta\|_2^2 \right]$$

The estimates of β and σ^2 are independent, hence we can first estimate β and use it for estimating σ^2 .

4.1 Estimation of parameters

Definition Residual sum of squares

$$\text{RSS}(\beta) = \sum_{i=1}^N (y_i - x_i^T \beta)^2 = (\mathbf{y} - X\beta)^T (\mathbf{y} - X\beta) = \mathbf{y}^T \mathbf{y} - 2\beta^T X^T \mathbf{y} + \beta^T X^T X \beta$$

Estimator of coefficients

The MLE of β is equal to the argmin of the residual sum of squares. By convexity,

$$\hat{\beta} = (X^T X)^{-1} X^T \mathbf{y}$$

globally minimizes the RSS function.

Estimator of the error variance

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \frac{1}{n-p} \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2$$

We obtain the estimator of the residual standard error $\hat{\sigma}$ by taking the square root.
If $\hat{\sigma}$ is smaller then there is less error in \mathbf{y} and hence greater estimation precision.

Definition R^2

$$R^2 = 1 - \frac{\sum(\hat{y}_i - y_i)^2}{\sum(\bar{y} - y_i)^2} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

Generally, R^2 is squared correlation between prediction $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$ and response \mathbf{y} .

Definition Prediction interval

$$\hat{y}_0 - t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2(1 + \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0))} \leq y_0 \leq \hat{y}_0 + t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2(1 + \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0))}$$

Remark: the prediction interval is larger than a confidence interval, and prediction always involves some variation due to the term $\hat{\sigma}^2$

4.2 Detecting influential observations

Definition Marginal testing parameters

C_{jj} is element jj of $(\mathbf{X}^T \mathbf{X})^{-1}$, and we define the **standard error** as

$$\text{se}(\hat{\beta}_j) = \sqrt{\hat{\sigma}^2 C_{jj}}$$

Definition Hat matrix

$$H = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

The hat matrix projects outcomes \mathbf{y} onto space spanned by the columns of predictor matrix \mathbf{X} .

Predicted outcomes

The predicted outcomes are

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} = C(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = H\mathbf{y}$$

Variance of predicted outcomes:

$$\text{Var}(\hat{\mathbf{y}}) = \sigma^2 H$$

Variance of residuals:

$$\text{Var}(\mathbf{y} - \hat{\mathbf{y}}) = \sigma^2(I - H)$$

Leverages

The **leverage** is the i -th diagonal value h_{ii} of H , which is in the interval $[0, 1]$ for all i .

The sum of leverages equals p , and the observation i is **influential** if

$$h_{ii} > 2 \cdot \bar{h} = \frac{2p}{n}$$

4.3 Residuals

Definition Standardized residuals

Size of residuals: $\hat{\varepsilon}_i = y_i - \hat{y}_i$

Standardized residuals with mean zero and approximate unit variance:

$$d_i = \frac{\hat{\varepsilon}_i}{\sqrt{\hat{\sigma}^2}}$$

An observation is an **outlier** if $|d_i| > 3$.

Definition Studentized residuals

Adapting for high leverage gives the **Studentized residuals**:

$$r_i = \frac{\hat{\varepsilon}_i}{\sqrt{\hat{\sigma}^2 \cdot (1 - h_{ii})}}$$

Definition Externally Studentized residual

The **externally Studentized residual**

$$t_i = \frac{\hat{\varepsilon}_i}{\sqrt{\hat{\sigma}_{(i)}^2 \cdot (1 - h_{ii})}} \sim t_{n-p-1}$$

is the basis for a statistical test with $H_0: \hat{\varepsilon}_i$ is not an outlier

Definition DFBETAS

Let $\hat{\beta}_{j(i)}$ be the coefficient $\hat{\beta}_j$ computed without observation i . Then

$$\text{DFBETAS}_{ij} = \frac{\hat{\beta}_j - \hat{\beta}_{j(i)}}{\sqrt{\hat{\sigma}_{(i)}^2 \cdot C_{jj}}}$$

Definition Cook's distance

$$C_i = \frac{(\hat{\beta} - \hat{\beta}_{(i)})^T X^T X (\hat{\beta} - \hat{\beta}_{(i)})}{p \hat{\sigma}^2}$$

5 Survival analysis

Definition Survival function

Let the random variable $Y \geq 0$ be the survival time.

The **survival function** gives probability of survival beyond y , that is

$$S(Y) = \mathbb{P}(Y \geq y) = 1 - F(y)$$

Definition Hazard function

The **hazard function** h is the probability of death in $[y, y + \delta_y]$ given survival up to y relatively to an infinitely small interval

$$h(y) = \lim_{\delta_y \rightarrow 0} \frac{\mathbb{P}(Y \in [y, y + \delta_y] \mid Y \geq y)}{\delta_y} = -\frac{d}{dy} \log(S(y))$$

Definition *Cumulative hazard function*

For the **cumulative hazard function** we have

$$H(y) = \int_0^y h(t) dt = -\log(1 - F(y))$$

The **median** $y_{0.50}$ is the solution of

$$\frac{1}{2} = \mathbb{P}(Y \leq y) = F(y)$$

Lack of memory

If the system lacks memory of survival beyond x , then

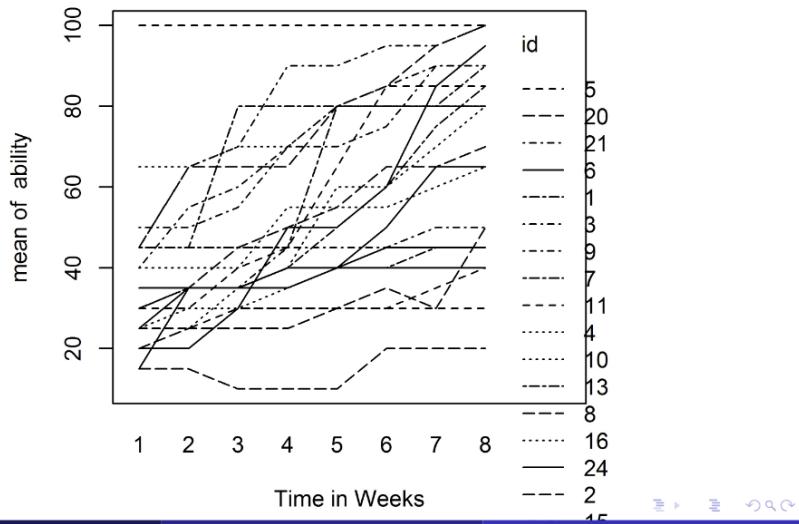
$$\mathbb{P}(X > x + y \mid X > x) = \mathbb{P}(X > y)$$

The concept of lack of memory leads to the exponential distribution.

$$F(x) = (1 - e^{-\theta x}) \mathbf{1}_{[0, \infty)}$$

A work of art

Line plot of Barthel index 24 patients



Index

- F -distributed, 2
- R^2 , 10
- t -distributed, 2
- asymptotic χ^2 test, 9
- Asymptotic normality of MLE, 6
- canonical, 5
- Central limit theorem, 4
- Characteristic function, 3
- Chi-squared, 2
- Continuity theorem, 4
- Convergence in distribution, 3
- Convergence in probability, 3
- Cook's distance, 11
- covariance matrix, 2
- Cramer-Rao lower bound, 6
- cumulative hazard function, 12
- degree of freedom, 2
- Density function of the normal distribution, 2
- design matrix, 9
- Deviance, 9
- DFBETAS, 11
- exponential family, 5
- externally Studentized residual, 11
- generalized models, 7
- Hat matrix, 10
- hazard function, 11
- influential, 10
- Information number, 5
- IWLS (Iterative Weighted Least Squares), 8
- Lack of memory, 12
- leverage, 10
- Lindeberg condition, 4
- Lindeberg-Feller CLT, 4
- Linear models, 7
- link function, 7
- Log-likelihood, 5
- maximum likelihood estimator, 5
- median, 12
- Model equation, 9
- Modified Newton-Raphson (Nelder & Wedderburn), 7
- Moment generating function, 3
- multivariate normal distributed, 2
- natural parameter, 5
- Newton-Raphson algorithm for finding MLE, 7
- Normal linear model, 9
- outlier, 11
- Prediction interval, 10
- Probability generating function, 3
- Residual sum of squares, 9
- Score function, 5
- Size of residuals, 11
- Slutsky's lemma, 4
- Some asymptotic properties, 3
- standard error, 10
- Standardized residuals, 11
- Strong consistency of MLE, 6
- Studentized residuals, 11
- survival function, 11
- variance matrix, 2
- Wald statistic, 9
- Weibull distribution, 7