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2 1 INTRODUCTION

1 Introduction

1.1 Distributions related to the normal distribution

Density function of the normal distribution

f(x) =
1√
2πσ2

exp

[
−1

2

(
x− µ

σ

)2
]

Chi-squared distribution

If Z ∼ N (0, 1), then Z2 ∼ χ2(1) is Chi-squared distributed with 1 degree of freedom.
If Yi ∼ N (µi, σ

2
i ) are independent, then

n∑
i=1

(
Y1 − µi

σi

)2

∼ χ2(n)

where n is the number of degrees of freedom.

t-distribution

If Z ∼ N (0, 1) is independent to X ∼ χ2(n), then

Z√
X/n

∼ t(n)

is t-distributed with n degrees of freedom.

F -distribution

If X1 ∼ χ2(n1) and X2 ∼ χ2(n2) are independent, then

X1/n1

X2/n2
∼ F (n1, n2)

is F -distributed with parameters n1, n2.

Definition Variance matrix

Let y be a random vector with expectation vector µ. Then the variance matrix of y is

Var(y) = E
[
(y − µ)(y − µ)⊤

]
Note that the variance matrix is symmetric and hence the eigenvalues are real.

Multivariate normal distribution

If Z1, . . . , Zn are i.i.d. N (0, 1) random variables, and z⊤ = (Z1, . . . , Zn), then

f(Z1, . . . , Zn) =

n∏
i=1

f(zi) =

(
1√
2π

)n

exp

(
−1

2
z⊤z

)
and z ∼ N (0, In) is multivariate normal distributed,
where E[z] = 0 is the zero vector and Var[z] = In is the identity matrix.

Definition Covariance matrix

Let x and y be random vectors with expectation vectors µx and µy respectively.
The covariance matrix between x and y is

Cov(x,y) = E
[
(x− µx)(y − µy)

⊤]
If x and y are independent, then the covariance matrix is the zero matrix.
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1.2 Generating functions

Definition Generating functions

Probability generating function:
GY (t) = E[tY ]

Moment generating function:
My(t) = E[exp(t⊤y)]

Characteristic function:
φy(t) = E[exp(it⊤y)]

Moment generating property

If the n-th derivative of My is continuous around zero, then

M
(k)
Y (0) = E[Y k] for all k = 0, 1, . . . , n

If E[Y n] exists, then

E[Y k] = (−i)kφ(k)
Y (0) for all k = 0, 1, . . . , n

Properties of the characteristic function

• If E[|y|] <∞, then φ̇(t) exists and is continuous, and φ̇(0) = −iE[y⊤]

• If E[|y|2] <∞, then φ̈(t) exists and is continuous, and φ̈(0) = −E[yy⊤]

• If P(y = c) = 1, then φy(t) = exp(it⊤c)

• If y ∼ N (µ, V ), then φy(t) = exp
(
it⊤µ− t⊤V t

2

)

1.3 Convergence

Definition Convergence

Convergence in distribution

yn
D−→ y ⇐⇒ P(yn ≥ x)→ P(y ≤ x) for all x ∈ Rp

Convergence in probability

yn
P−→ y ⇐⇒ lim

n→∞
P(∥yn − y∥ > ε) for all ε > 0

Proposition Some asymptotic properties

yn
D−→ y =⇒ yn

D−→ y

yn
P−→ c ⇐⇒ yn

D−→ c

yn
D−→ y, d(yn,xn)

P−→ 0 =⇒ xn
D−→ y

yn
D−→ y, xn

P−→ c =⇒ (yn,xn)
D−→ (y, c)

yn
D−→ y, xn

P−→ x =⇒ (yn,xn)
P−→ (y,x)
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Lemma Slutsky’s lemma

yn
D−→ y, xn

D−→ c =⇒ yn + xn
D−→ y + c

yn
D−→ y, xn

D−→ c =⇒ xnyn
D−→ cy

yn
D−→ y, xn

D−→ c =⇒ x−1
n yn

D−→ c−1y

Proposition

yn converges in distribution to y if and only if φyn
(t) converges to φy(t) for all t.

Theorem Continuity theorem

Let g : Rk → Rm be continuous at every point of a set C such that P(y ∈ C) = 1. Then

1.4 Central limit theorem

Theorem Central limit theorem

If y1,y2, . . . are i.i.d. with mean vector µ and positive definite variance matrix Σ, then

√
n(yn − µ)

D−→ N (0,Σ))

Theorem Lindeberg-Feller CLT

Suppose that

• Xnj are independent for j = 1, . . . , n (per row)

• E[Xnj ] = 0 (often without loss of generality)

• Var(Xnj) = σnj

• Zn =
∑n

j=1 Xnj

• B2
n = Var(Zn) (monotonically increases with n)

If the Lindeberg condition holds:

lim
n→∞

 1

B2
n

n∑
j=1

E
[
X2

nj1(|Xnj | ≥ εBn)
] = 0 for all ε > 0

Then
Zn

Bn

D−→ N (0, 1)

Conversely, if

lim
n→∞

1

B2
n

max
j≤n

σnj = 0 and
Zn

Bn

D−→ N (0, 1)

then the Lindeberg condition holds.
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2 Estimation

2.1 Exponential family

Definition Exponential family

A probability distribution fθ(y) belongs to the exponential family if it can be written as

fθ(y) = s(y)t(θ)ea(y)b(θ)

= exp[a(y)b(θ) + c(θ) + d(y)]

If a(y) = y, then the distribution is canonical. b(θ) is the natural parameter of the distribution.

Lemma

Univariate distributions in the exponential family are concave, i.e. they have a unique maximum.

Lemma

For a density function fθ(y) = exp[a(y)b(θ) + c(θ) + d(y)] in the exponential family, if b′(θ) ̸= 0 then

E[a(Y )] = −c′(θ)

b′(θ)
Var[a(Y )] =

b′′(θ)c′(θ)− c′′(θ)b′(θ)

(b′(θ))3

Definition Multivariate likelihood

L(θ,y) =

n∏
i=1

f(yi, θ)

Notation

Log-likelihood:
ℓ(θ;y) = logL(θ;y)

Score function:

U(θ;y) =
d

dθ
ℓ(θ;y)

Information number:
J = Var[U(θ;y)]

Lemma

For a distribution in the exponential family, we have E[U ] = 0 and J > 0.

Lemma

For a distribution in the exponential family, we have

E[−U ′] = Var[U ] = b′′(θ)
c′(θ)

b′(θ)
− c′′(θ) = J

2.2 Maximum likelihood estimators

Definition Maximum likelihood estimator

The maximum likelihood estimator θ̂n is the value of θ which maximizes the likelihood.

θ̂MLE = argmax
θ∈Θ

L(θ,y) = argmax
θ∈Θ

ℓ(θ,y)
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Theorem Strong consistency of MLE

If {Yn} are i.i.d. with density f(y; θ) and true parameter θ0 and

• θ ∈ Θ with Θ compact

• f(y; θ) is continous in θ for all y

• there exists a dominating function K(y) such that Eθ0 |K(Y )| <∞
and U(y; θ) = log f(y; θ)− log f(y; θ0) ≤ K(y) for all y, θ

• for all θ ∈ Θ, there exists ρ > 0 such that sup
|θ′−θ|<ρ

f(y; θ′) is measurable in y

• if f(y; θ) = f(y; θ0) almost everywhere, then θ = θ0

then for any sequence of ML estimates we have {θ̂n} → θ0:

lim
n→∞

P(∥θ̂n − θ0∥ ≤ ε) = 1

Note: all conditions are necessary.

Theorem Asymptotic normality of MLE

If {Yn} are i.i.d with density f(y; θ) and true parameter θ0 and

• Θ is an open subset of Rp and θ0 is an interior point of the confidence interval around θ̂n

• 2nd partial derivatives of f(y; θ) with respect to θ are continuous for all y

• There exists a dominating function K(y) with Eθ0 |K(Y )| < ∞ such that the absolute value of each element
of

ψ̇(y; θ) =
∂2

∂θ∂θ⊤
log g(y; θ)

is integrable and bounded by K(y) uniformly in a neighborhood of θ0

• the Fisher information matrix J(θ0) = −Eθ0ψ̇(y, θ) is positive definite

• if f(y; θ) = f(y; θ0) almost everywhere, then θ = θ0

then √
n(θ̂n − θ0)

D−→ N (0, J(θ0)
−1

Theorem Cramer-Rao lower bound

If

• g(θ) = Eθ[θ̂(Y )]

• ∂
∂θf(y; θ) exists and passes the integral sign in both

´
f(y; θ) = 1 and

´
θ̂(y)f(y; θ) dy = g(θ)

• 0 < J(θ)

then

Var[θ̂(Y )] ≥ g′(θ)2

J(θ)
for all θ ∈ Ω

Corollary

If the conditions for asymptotic normality hold, then

J(θ0)
1/2
√
n(θ̂n − θ0)

d−→ N (0, I)

If J(θ) is continuous, then

J(θ̂n)
P−→ J(θ0) J(θ̂n)

−1 P−→ J(θ0)
−1

Corollary

The maximum likelihood estimator attains the Cramer-Rao lower bound if and only if θ̂(y) is a sufficient statistic for
θ from the exponential family.
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Likelihood ratio test

Assume the maximum likelihood estimator exists and is asymptotically normal.
Suppose that H0 : θ1 = · · · = θr = 0 where 1 ≤ r ≤ k, and θ0 satisfies H0. Then

−2 log
(
supΘ0

∏n
i=1 f(xi|θ)

supΘ
∏n

i=1 f(xi|θ)

)
= −2 log

(
L(θ∗n)

L(θ̂n)

)
d−→ χ2

r

3 Linear models

Linear models

Linear models have the form
E(Yi) = µi = x

⊤
i β Yi ∼ N (µi, σ

2)

In generalized models we have
g(µi) = x

⊤
i β

for a non-linear link function g which is injective and continuous.

Weibull distribution

The density function of the Weibull distribution is

f(y, θ) =
λyλ−1

θλ
exp

[
−
(y
θ

)λ]
It belongs to the exponential family: f(y, θ) = exp[a(y)b(θ) + c(θ) + d(y)] with

a(y) = yλ b(θ) = −θ−λ c(θ) = log(λ)− λ log(θ) d(y) = (λ− 1) log y

3.1 The IWLS algorithm

Algorithm Newton-Raphson algorithm for finding MLE

We repeatedly apply the following step to find the MLE θ:

θm+1 = θm −
U(θm)

U ′(θm)

Algorithm Modified Newton-Raphson (Nelder & Wedderburn)

We repeatedly apply

θm+1 = θm +
U(θm)

E[−U ′(θm)]
= θm +

U(θm)

J(θm)

Assuming convergence, we end up with the MLE (the zero of the score function).

θ = θ +
U(θ)

J(θ)
=⇒ U(θ) = 0



3.1 The IWLS algorithm 8 3 LINEAR MODELS

Preparations for IWLS

Suppose Y1, . . . , Yn are independently distributed with densities in the exponential family:

f(Yi, θi) = exp[a(Yi)b(θi) + c(θi) + d(Yi)]

Define

µi = −
c′(θi)

b′(θi)
ηi = g(µi) = x

T
i β

Let W be the n× n diagonal matrix with elements

wii =
1

Var(Yi)

(
∂µi

∂ηi

)2

and let X be the matrix such that the i-th row is xT
i . Finally, define

z
(m)
i =

p∑
k=1

xikb
(m)
k + (yi − µi)

∂ηi
∂µi

Proposition

The vector
b(m+1) = (XTW (m)X)−1XTW (m)z(m)

is the global minimizer of ∥∥∥(W (m))
1
2 z(m) − (W (m))

1
2Xb

∥∥∥2
2

over any b ∈ Rp+1

Algorithm IWLS (Iterative Weighted Least Squares)

1. Start with b(1), possibly rational.

2. Set m = 1.

3. Compute W (m) and W (m+1) and bm+1.

4. While m < 100 and ∥b(m) − b(m+1)∥ > 0.0001, repeat the following steps:

(a) Compute W (m+1) and z(m+1) from b(m+1)

(b) Compute the update
b(m+1) = (XTW (m+1)X)−1W (m+1)z(m+1)

(c) m← m+ 1

If the IWLS algorithm generates a converging sequence, then

b(m) → b = β̂ = β̂MLE = (XT ŴX)−1XT Ŵ ẑ

Proposition

Under regularity assumptions the estimator obtained from IWLS is consistent

β̂
P−→ β

and asymptotically normal

(β̂ − β)
d−→ N

(
0, (XT ŴX)−1

)
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3.2 Inference

Proposition

The score function is asymptotically normal:

U(β) = U
d−→ N (0, J) =⇒ UTJ−1U

d−→ χ2(p)

Definition Asymptotic chi-square test

We have
(β0 − β̂)TJ(β̂)(β0 − β̂)

d−→ χ2(p)

This is known as the Wald statistic.
We reject H0 by the asymptotic χ2 test if

(β0 − β̂)TJ(β̂)(β0 − β̂) > χ2
p,1−α

Definition Deviance

D = 2(ℓ(β)− ℓ(β̂))

4 Normal linear models

Definition Normal linear model

Y = β0 + β1x1 + · · ·+ βpxp + ε ε ∼ N (0, σ2)

Model equation

Let xT
i = (1, xi1, xi2, · · · , xip) be row i of the n× p design matrix X.

Model equation:
ε ∼ N (0, σ2I) =⇒ y ∼ N (Xβ, σ2I)

Likelihood for the normal linear model

f(y, β, σ2) = (
√
2πσ2)−n exp

[
− 1

2σ2
∥y −Xβ∥22

]
The estimates of β and σ2 are independent, hence we can first estimate β and use it for estimating σ2.

4.1 Estimation of parameters

Definition Residual sum of squares

RSS(β) =

N∑
i=1

(yi − xT
i β)

2 = (y −Xβ)T (y −Xβ) = yTy − 2βTXTy + βTXTXβ

Estimator of coefficients

The MLE of β is equal to the argmin of the residual sum of squares. By convexity,

β̂ = (XTX)−1XTy

globally minimizes the RSS function.
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Estimator of the error variance

σ̂2 =
1

n− p

n∑
i=1

(yi − ŷi)
2 =

1

n− p
∥y
¯
−Xβ̂∥2

We obtain the estimator of the residual standard error σ̂ by taking the square root.
If σ̂ is smaller then there is less error in y and hence greater estimation precision.

Definition R2

R2 = 1−
∑

(ŷi − yi)
2∑

(ȳ − yi)2
= 1− RSS

TSS

Generally, R2 is squared correlation between prediction ŷ = Xβ̂ and response y.

Definition Prediction interval

ŷ0 − tα/2,n−p

√
σ̂2(1 + xT

0 (X
TX)−1x0)) ≤ y0 ≤ ŷ0 + tα/2,n−p

√
σ̂2(1 + xT

0 (X
TX)−1x0))

Remark: the prediction interval is larger than a confidence interval, and prediction always involves some variation
due to the term σ̂2

4.2 Detecting influential observations

Definition Marginal testing parameters

Cjj is element jj of (XTX)−1, and we define the standard error as

se(β̂j) =
√
σ̂2Cjj

Definition Hat matrix

H = X(XTX)−1XT

The hat matrix projects outcomes y onto space spanned by the columns of predictor matrix X.

Predicted outcomes

The predicted outcomes are
ŷ = Xβ̂ = C(XTX)−1XTy = Hy

Variance of predicted outcomes:
Var(ŷ = σ2H

Variance of residuals:
Var(y − ŷ = σ2(I −H)

Leverages

The leverage is the i-th diagonal value hii of H, which is in the interval [0, 1] for all i.
The sum of leverages equals p, and the observation i is influential if

hii > 2 · h̄ =
2p

n
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4.3 Residuals

Definition Standardized residuals

Size of residuals: ε̂i = yi − ŷi
Standardized residuals with mean zero and approximate unit variance:

di =
ε̂i√
σ̂2

An observation is an outlier if |di| > 3.

Definition Studentized residuals

Adapting for high leverage gives the Studentized residuals:

ri =
ε̂i√

σ̂2 · (1− hii)

Definition Externally Studentized residual

The externally Studentized residual

ti =
ε̂i√

σ̂2
(i) · (1− hii)

∼ tn−p−1

is the basis for a statistical test with H0 : ε̂i is not an outlier

Definition DFBETAS

Let β̂j(i) be the coefficient β̂j computed without observation i. Then

DFBETASij =
β̂j − β̂j(i)√
σ̂2
(i) · Cjj

Definition Cook’s distance

Ci =
(β̂ − β̂(i))

TXTX(β̂ − β̂(i)

pσ̂2

5 Survival analysis

Definition Survival function

Let the random variable Y ≥ 0 be the survival time.
The survival function gives probability of survival beyond y, that is

S(Y ) = P(Y ≥ y) = 1− F (y)

Definition Hazard function

The hazard function h is the probability of death in [y, y+ δy] given survival up to y relatively to an infinitely small
interval

h(y) = lim
δy→0

P(Y ∈ [y, y + δy] | Y ≥ y

δy
= − d

dy
log(S(y))
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Definition Cumulative hazard function

For the cumulative hazard function we have

H(y) =

ˆ y

0

h(t) dt = − log(1− F (y))

The median y0.50 is the solution of
1

2
= P(Y ≤ y) = F (y)

Lack of memory

If the system lacks memory of survival beyond x, then

P(X > x+ y | X > x) = P(X > y)

The concept of lack of memory leads to the exponential distribution.

F (x) = (1− e−θx)1[0,∞)

A work of art
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